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1 Introduction

Among various Dp branes with different dimensionality p, the D8 brane is peculiar [1–3]

and difficult to understand: as a codimension one extended object, its Ramond−Ramond

(R-R) field does not fall off with distance (like a planar source in 3 + 1 dimensions). As

such, when its bulk description is considered in terms of dilaton and metric, the dilaton

diverges a finite distance from the brane. It is thus believed that the D8-brane cannot

exist as an independent object, but only in connection with orientifold planes, for example,

arising in the T-dual of the type I theory [1].

Part of the above nature of D8 brane also manifests itself in the interacting D0−D8

system. For example, from the closed string viewpoint, the stringy cylinder-diagram inter-

action energy from the Neveu-Schwarz−Neveu-Schwarz (NS-NS) sector (also from the R-R

sector) is always divergent. On the one hand, this system, like ND = 4 system,1 preserves

1/4 bulk supersymmetries (susy) and as such the net static interaction between the two

branes vanishes due to the “abstruse identity”. The zero net interaction for the ND =

4 case is, however, due to the separately vanishing contribution from either the NS-NS

sector or the R-R sector. The vanishing NS-NS sector contribution is expected since the

two D-branes involved carry different R-R charges, therefore giving an expected zero R-R

sector contribution. However, for the ND = 8 case at hand, we actually have an infinite

NS-NS contribution and this must imply an infinite R-R contribution which cancels pre-

cisely the NS-NS contribution. One special feature for this particular system is that only

1For an open string stretched between a Dp and a Dp
′(assuming p ≥ p

′), we have the string to satisfy for

every coordinate a Neumann (N) or Dirichlet (D) boundary condition at either end. We denote by NN the

number of coordinates for which both ends have a N condition, by DD the number of coordinates for which

both ends have a D condition, and by ND the number of coordinates for which one end has a N condition

while the other has a D condition. Here we have the number of mixed boundary conditions ND = p − p
′.

A zero net static force occurs for ND = 0, 4, and 8, respectively [4–6]. For the D0-D8 system, we have ND

= 8 and NN = DD = 1. In this paper, for each given brane, we use x
α to label the coordinates along the

N-directions and y
i to label the coordinates along the D-directions.
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the massless modes rather than the full string spectrum appear to contribute in either

sector. The contribution from the R-R sector is however puzzling and counter-intuitive

since one naively does not expect a D0 and a D8 to interact through a R-R gauge field.2

For this, there were various efforts trying to understand the puzzle behind [7–9]. One

way to interpret this massless contribution is to identify it as due to a string stretched

between the two branes with its tension one-half of that of a fundamental string [7, 8].

This is supported by the existence of a coupling of a string, with its tension one-half of

that of the fundamental string, with a worldvolume gauge field in the 8-brane effective

action in the presence of a D0 brane [7]. This is further supported when the 0-brane in

the presence of the 8-brane is considered in the massive type IIA supergravity along the

line of [10]. This interpretation explains the anomalous creation of a fundamental string

when the 0-brane crosses the 8-brane and this string creation is in turn related to the

Hanny-Witten effect [11] by a series of dualities. It holds also for system D8−p-Dp which is

related to the D0-D8 system by T-duality. This approach considers so far only the finite

piece of the infinite contribution from either the NS-NS or the R-R sector.

The other interpretation tries to follow the same footing as in ND = 0 and 4 cases.

This is to identify the R-R charge carried by the 0-brane with the one opposite to the R-R

charge carried by the 8-brane via a duality relation which holds only for this particular

system and those related to this by T-duality and as such the interaction from the R-R

sector is nothing but the usual attractive Coulomb-like force between the two branes [9].

In this paper, we try to address how to implement these interpretations with the

consideration of the divergence of the potential and extend them to the case when the D8

brane carries a constant flux, electric or magnetic, along with a few subtle issues which

need clarifications. We also examine whether there is an improvement on the D8 brane

nature of existence as an independent object when it carries a flux, electric or magnetic.

This paper is organized as follows. In section 2, we address an issue on how to deal

with the divergence in the interaction energy from either sector between a D0 and a D8

which has been ignored so far in the first interpretation even though this is not a real

concern in the above second interpretation. We also calculate the R-R Coulomb potential

including the divergent piece via an effective field theory approach where the crucial duality

relation recognized in the second interpretation is employed. In section 3, we consider

the case of D8 carrying a constant electric flux and show that the improved versions of

these interpretations continue to hold. We also address a related subtle issue regarding

the regularization of fermionic zero-modes in the calculation of the R-R contribution. In

section 4, we consider the case of D8 carrying a magnetic flux and show that once again

the improved versions still hold even though there is now a net force between the two

branes. We also examine if the D8 brane nature of existence as an independent object

can be improved when it carries a flux, electric or magnetic. We summarize the results in

section 5.

2In the open string description, this contribution is from the R (−1)F sector since the two fermionic

zero modes in one NN and one DD directions cancel the superghost zero modes but the contribution from

the NS (−1)F sector vanishes due to the fermionic zero modes along eight ND-directions.
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2 On the divergence

For the system under consideration and for concreteness, we assume the D0 along x0 and

the D8 along x0, x1, · · · x8 with the D0 located at y1 = y2 = · · · = y8 = 0, y9 = −Y with

Y > 0(see footnote 3 for notation conventions) and the D8 at y9 = 0. In other words,

the two are separated by a distance Y along the 9th direction. The interaction potential

between the two in either sector can be calculated either as a one-loop annulus amplitude

from the open string description [6] or as a tree-level cylinder amplitude from the closed

string boundary state description [9]. The contribution of the NS and R open string sectors

to the potential per unit D0 brane worldvolume in the NS-NS sector is

VNS−NS(Y ) =
1

2
(8π2α′)−1/2

∫ ∞

0
dt e−

Y 2t
2πα′ t−3/2, (2.1)

which gives rise to a finite constant repulsive force acting on the D0 as

FNS−NS =
dVNS−NS

dY
= − 1

(4π)1/2
1

2πα′

∫ ∞

0
dx e−x x−1/2 = − 1

4πα′
= −T0

2
, (2.2)

where we have changed the integration variable t to x = Y 2t/2πα′ in the second equality

and the resulting integration is simply the well-defined gamma-function Γ(1/2), and α′ is

the string constant, related to the tension of a fundamental string via T0 = (2πα′)−1. The

contribution of R (−1)F open string sector to the cylinder potential per unit D0-brane

worldvolume in the R-R sector is

VR−R(Y ) = −1

2
(8π2α′)−1/2

∫ ∞

0
dt e−

Y 2t
2πα′ t−3/2, (2.3)

which gives rise to an finite attractive constant force acting on the D0 brane. Similarly,

this force can be obtained as

FR−R =
dVR−R

dY
=
T0

2
. (2.4)

The peculiar feature for this particular system is that only the massless modes rather than

the full string spectrum appear to contribute to the potential in either sector. In addition,

the force from either sector is constant as shown above. As expected, due to the preservation

of 1/4 susy, the total potential or the net force acting on either object in the system vanishes

as obviously from the above. The non-vanishing R-R contribution can either be inferred

from the ‘no-force’ condition with the easily calculated NS-NS contribution for this system

or can be calculated, using a regularization of fermionic zero-modes, from the one-loop open

string annulus diagram in the R(−1)F sector [6] or from the tree-level closed string cylinder

diagram in the R-R sector [9]. In spite of this, it is puzzling and difficult to understand

this result as discussed in the Introduction.

To resolve this puzzle, one way is to interpret the constant attractive R-R force given

in eq. (2.4) above as due to a string stretched between the D0 and the D8 with its tension

one half of that of a fundamental string [7, 8]. This interpretation is in line with [10] for

a D0 brane in the presence of a D8 brane and is also consistent with the Hanny-Witten

– 3 –
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effect [11] for a D0 crossing a D8. However, there is a subtle issue regarding the divergence

of potential in either sector given above which has been ignored so far, for example, in [8]

when such an interpretation is invoked. The potential in either sector as given above

contains the following integration

∫ ∞

0
dt e−

Y 2t
2πα′ t−3/2 =

Y

(2πα′)1/2

∫ ∞

0
dx e−x x−3/2, (2.5)

which is actually divergent and where on the right we have used the integration variable

x = Y 2t/2πα′. Note that the integration on the right above is not simply the gamma

function Γ(−1/2) as usually taken in the literature, for example, in [8]. The integral

representation of Γ(z) with z a complex number

Γ(z) =

∫ ∞

0
dx e−xxz−1, (2.6)

is valid only for Re (z) > 0. When Re (z) ≤ 0, Γ(z) can still be defined but it doesn’t

have the above integral representation. One has to use its other representations. In other

words, the integration on the right of eq. (2.5) is actually divergent, not the finite Γ(−1/2).

Due to the divergent nature, we need to deal with the integration carefully. For this let us

begin with the left side of (2.5) and denote the integration as I

I ≡
∫ ∞

0
dt e−

Y 2t
2πα′ t−3/2 = −2 t−1/2 e−

Y 2t
2πα′

∣
∣
∣
∣

∞

0

− 2Y

(2πα′)1/2

∫ ∞

0
dx e−x x−1/2, (2.7)

where we have performed an integration by part and changed the integration variable to

x = Y 2t/2πα′ in the second term. The first term is ∞, denoted as I∞. The integration

in the second term is nothing but the well-defined Γ(1/2) =
√
π. Note that the divergence

of I∞ is due to t = 0 at which the exponential in the first term becomes unity and we

therefore expect I∞ to be independent of Y . This is consistent with the fact that the force

calculated in either sector above is constant and can indeed be obtained merely from the

second term. So we have now I = I∞ − 2π1/2Y
(2πα′)1/2 , i.e., a separation-independent divergent

term plus a separation-dependent finite piece. With this, we have

VNS−NS(Y ) =
I∞

2(8π2α′)1/2
− Y

4πα′
, VR−R(Y ) = − I∞

2(8π2α′)1/2
+

Y

4πα′
. (2.8)

So in addition to the finite piece, the potential in each sector has a divergent piece which

is independent of the brane separation. It is obvious that this divergent piece is the

contribution between the D0 and the D8 when the two is put on top of each other, i.e.,

with a zero separation. So this piece in either sector can be viewed as the corresponding

zero-point energy. When the two move away from each other, there is an additional finite

piece created which can be viewed as the Casimir energy of the system in either sector. In

the R-R sector, this can be taken as due to the creation of a string stretched between the

two with its tension one half of that of the fundamental string. Note that the divergence

must come from the nature of D8 brane as mentioned in the Introduction. So whenever

this persists, the corresponding system cannot be taken as an independent object.

– 4 –
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With this divergent piece in either sector, how then can we make a consistent picture

using the creation of a fundamental string when the D0 crosses the D8 adiabatically? For

this, we need to use the improved version of this interpretation given in [12] where it is

stressed that such a crossing is merely a parity transformation along the DD direction (i.e.,

along the x9 direction). Such a transformation will reverse the sign of R(−)F term but leave

the rest of terms invariant, therefore not converting a brane into an anti-brane in general

even though it doesn’t make difference for the present case since we have the NS(−)F term

vanishing. If the initial configuration is supersymmetric as the present case and is taken

as the vacuum configuration, we have the total potential as NS +R+NS(−)F +R(−)F ,

where the first two terms give the NS-NS sector potential while the last two terms give

the R-R sector one. After the adiabatically crossing, we end with a vacuum configuration

NS +R+NS(−)F −R(−)F since only the R(−)F will change its sign, which is obviously

non-supersymmetric unless the R(−)F term vanishes. But this is an adiabatic process and

the total energy should be kept unchange, therefore we must have created an additional

term 2R(−)F in the process, as argued in [12], such that

NS +R+NS(−)F +R(−)F =
(
NS +R+NS(−)F −R(−)F

)
+ 2R(−)F . (2.9)

If the divergent piece in either sector is not considered, then the above is consistent with

the creation of a fundamental string since the term 2R(−)F is just the tension of a fun-

damental string times the separation. For the present case, the above continues to hold

if we include the divergent piece in either sector and the interpretation is now that the

crossing creates not only a fundamental string but also twice the R(−)F sector zero-point

energy before crossing whose origin may be better explained using the second interpretation

proposed in [9] when the brane separation vanishes. So we further improve the improved

interpretation proposed in [12] here.

Note that we don’t need to improve the second interpretation given in [9] much except

for merely insisting that the Coulomb-like potential includes the divergent piece as well as

the finite piece (so does the potential in the NS-NS sector) for which we turn next. This

R-R interaction is purely due to massless modes and as mentioned earlier, just like the

field theory limit of the ND = 0 case, it is simply due to the usual Coulomb-like force

between the two D-branes. This is however counter-intuitive for the ND = 8 system and

any other system related to this by T-duality. The complete discussion given [9] in terms of

relevant boundary states and vertex operators is lengthy and here we will use the effective

field theory approach, for example, following [13], to derive this same interaction based

on the underlying physics and the duality relation given there. The key for this is the

recognition that the usually completely decoupled unphysical degrees of freedom such as

the longitudinal and scalar states, the analogues of the scalar and longitudinal photons of

electrodynamics, in perturbative string theory becomes important when dealing with the

non-perturbative boundary states. This consideration will give rise to the duality relation,

mentioned earlier, which is crucial for the interaction to arise.

Since only the massless modes in type IIA are relevant here, the interaction in the R-R

sector is due to the exchange of an off-shell closed string between the two R-R charges,

just like the usual Coulomb interaction between two static charges as due to the exchange

– 5 –
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of a virtual photon. As discussed in [9], this off-shell closed string state can be represented

by the corresponding vertex operator which can be constructed from the on-shell massless

closed string vertex operator and by allowing the momentum k2 6= 0, i.e., off-shell. As

described in [9], the R-R sector boundary state used in the cylinder-diagram calculation is

in the (−1/2,−3/2) picture and to soak up the superghost number anomaly, it can only

couple to states that are also in the asymmetric picture. However, the vertex operators

used usually for constructing the R-R states are in the symmetric (−1/2,−1/2) picture

and are given as

VR(k; z, z̄) =
(CΓµ1µ2···µm+1)αβ̇

2
√

2(m+ 1)!
Fµ1µ2···µm+1

V α
−1/2(k/2; z)Ṽ

β̇
−1/2(k/2; z̄), (2.10)

with m odd (even) in IIA (IIB) theory and V α
l (k; z) = c(z)Sα(z)elφ(z)eik·X(z). The (m+1)-

form Fm+1 gives just the R-R field strength of IIA or IIB theory since the BRST invariance

of the vertex operator requires k2 = 0, and dFm+1 = d ∗ Fm+1 = 0 which are precisely the

Bianchi identity and the field equations of motion for the field strength.

The vertex operators in the (−1/2,−3/2) can also be constructed and they can be

transformed to the ones in the symmetric picture via a picture changing operation in the

right sector [14]. For the present purpose, we don’t need the complete construction as given

in [9] but the following term [15]

W (0)(k; z, z̄) =
(CΓµ1···µm)αβ̇

m!
Aµ1···µmV

α
−1/2(k/2; z)Ṽ

β̇
−3/2(k/2; z̄). (2.11)

Note that instead of the R-R field strength as in the symmetric picture, we need here only

the R-R m-form gauge potential Am. The BRST invariance of this vertex requires k2 = 0

and dAm = d ∗ Am = 0, therefore just a pure gauge potential. But this is sufficient for

what follows.

In the symmetric case, the electric-magnetic duality is Fm+1 ≃ ∗F9−m. If we consider

the spatial momentum in (2.10) only along the 9th direction, then we have from the duality

relation

F01 = k0A1 = −F23···9 = k9A2···8. (2.12)

Since the state considered is massless, therefore k0 = k9 and this gives

A1 = A2···8. (2.13)

It is important to realize that the above relation involves only the physical degrees of

freedom.

We now move to the asymmetric state (2.11). As will be seen, the above given condi-

tions for keeping the state BRST invariant are precisely those fulfilled by the mixture of

longitudinal and scalar polarizations which describe the Coulomb interaction. Let us focus

first on the 1-form potential and consider again the spatial momentum along 9th direction.

Then the pure gauge solution is simply, with k0 = k9, as

A0 = A9, and Ai = 0, for i = 1, 2, · · · 8. (2.14)

– 6 –
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For the state (2.11), we have a Hodge duality for the 10-dimensional unphysical polar-

izations. For 1-form potential, we have A9 = −A01···8. When combined this with (2.14),

we have

A0 = −A01···8. (2.15)

This unusual relation is of no relevance in perturbative string theory where the unphysical

degrees of freedom always decouple but it has remarkable consequences for the present

case. In fact, it implies that the charge felt by A0 is opposite to that felt by A01···8 and

thus the attractive Coulomb R-R force between a D0 and a D8 brane can be understood as

due to the exchange of longitudinal and scalar polarizations identified according to (2.15).

In the following, we will use this relation to derive the R-R Coulomb interaction via the

field theory approach [13].

With the canonical normalization [13] for the background R-R potential, the coupling

for a D0 with the 1-form R-R potential A0 is

J (0) =
√

2 c0 V1A0, (2.16)

and the coupling for a D8 with the 9-form R-R potential is

J (8) =
√

2 c8 V9A01···8, (2.17)

where Vp+1 is the worldvolume of Dp brane and the constant cp =
√
π(2π

√
α′)3−p. Then

the static interaction per unit D0 brane worldvolume due to the massless modes in the R-R

sector can be calculated in the momentum space simply as

VR−R(k⊥) = − 1

V1V9
J (0)J (8)
︸ ︷︷ ︸

= −2 c0 c8A0A01···8
︸ ︷︷ ︸

= − 1

2πα′ k2
⊥

, (2.18)

where we have used the explicit expression of cp and the key fact

A0A01···8
︸ ︷︷ ︸

= −A0A0
︸ ︷︷ ︸

= −A01···8A01···8
︸ ︷︷ ︸

=
1

k2
⊥

6= 0, (2.19)

because of (2.15). In the above, the propagator A0···pA0···p
︸ ︷︷ ︸

= −1/k2
⊥ is used and the k⊥

is the spatial momentum perpendicular to both branes, i.e., the momentum along the 9-th

direction for the present case. So the potential in coordinate space is

VR−R(Y ) =

∫ ∞

−∞

dk⊥
2π

e−ik⊥Y VR−R(k⊥)

= − 2

(2π)2α′

∫ ∞

0
dk⊥

cos k⊥Y

k2
⊥

=
2

(2π)2α′

(
cos k⊥Y

k⊥

∣
∣
∣
∣

∞

0

+ Y

∫ ∞

0

sin k⊥Y

k⊥
dk⊥

)

= − I∞

2(8π2α′)1/2
+

Y

4πα′
, (2.20)

where in obtaining the last line we have defined k⊥ =
√

2t/π2α′ in the first term and made

use of
∫ ∞

0 dx sinx/x = π/2 in the second term in the bracket in the third line above. This

– 7 –
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potential is identical to the stringy result given earlier in (2.8) but is now calculated via

the field theory approach as the Coulomb interaction. As stressed, the infinite piece should

be kept which reflects the nature of the D8 brane and it is just the Coulomb interacting

energy when the brane separation vanishes.

3 The D8 with an electric flux

In this section, we will examine whether the improved versions of the two interpretations

for the non-vanishing R-R potential discussed in the previous section in the absence of a

flux continue to hold when the D8 carries an electric flux. We will also discuss a subtle

issue regarding the regularization of fermionic zero-modes in the calculation of the R-R

potential for the present case.

For this, we first calculate the potential in the NS-NS sector. This can be worked out

in almost the same way as the case when the D8 doesn’t carry any flux [6, 9] if a trick as

adopted in [13, 16, 17] is employed. In the following, we will perform the calculations using

the closed string operator formalism in which D-branes with/without constant fluxes can be

described by the so-called boundary states. In this approach, there are two sectors, namely

NS-NS and R-R sectors, respectively. For later convenience, we give a brief description of

each and refer to [9, 13, 16] for detail.

Both in the NS-NS and R-R sectors, there are two possible implementations for the

boundary conditions of a D-brane which correspond to two boundary states |B, η〉 with

η = ±. However, only the so-called Gliozzi-Scherk-Olive (GSO) combinations |B〉NS−NS =
1
2 [|B,+〉NS−NS − |B,−〉NS−NS] and |B〉R−R = 1

2 [|B,+〉R−R + |B,−〉R−R] are selected in

the NS-NS and in the R-R sectors, respectively. The boundary state |B, η〉 is the product of

a matter part and a ghost part as |B, η〉 =
cp
2 |Bmat, η〉|Bg, η〉 with |Bmat, η〉 = |BX〉|Bψ, η〉,

|Bg, η〉 = |Bgh〉|Bsgh, η〉 and the overall normalization cp =
√
π(2π

√
α′)3−p. The boundary

states for ghosts and superghosts are independent of the fluxes and therefore remain the

same as before. We will not list them here for simplicity. The expressions of the mat-

ter part of |B, η〉 are given, respectively, as |BX〉 = exp
[
−∑∞

n=1
1
nα−n · S · α̃−n

]
|BX〉(0),

and |Bψ, η〉NS−NS = −i exp
[

i η
∑∞

m=1/2 ψ−m · S · ψ̃−m

]

|0〉 for the NS-NS sector, and

|Bψ, η〉R−R = − exp
[

i η
∑∞

m=1 ψ−m · S · ψ̃−m

]

|B, η〉(0)R−R for the R-R sector. They look

the same in form as their correspondences in the absence of fluxes. All the information

about the constant flux F is encoded in the S-matrix

S =

([

(η − F̂ )(η + F̂ )−1
]

αβ
,−δij

)

, (3.1)

and the zero-mode boundary states: for the bosonic sector as

|BX〉(0) =

√

− det
(

η + F̂
)

δ9−p(qi − yi)
9∏

µ=0

|kµ = 0〉, (3.2)

and for the R sector as

|Bψ, η〉(0)R =

(

CΓ0Γ1 · · ·Γp1 + i ηΓ11

1 + i η
U

)

AB

|A〉|B̃〉. (3.3)
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In the above, we have denoted by yi the positions of the D-brane along the transverse

directions, by C the charge conjugation matrix and by U the following matrix

U =
1

√

− det(η + F̂ )
; exp

(

−1

2
F̂αβΓ

αΓβ
)

; (3.4)

where the symbol ; ; means that one has to expand the exponential and then to anti-

symmetrize the indices of the Γ-matrices. |A〉|B̃〉 stands for the spinor vacuum of the R-R

sector. We also define F̂ = 2πα′F in the above. We would like to point out that the

η in the above means either sign ± or the flat signature matrix (−1,+1, · · · ,+1) on the

world-volume and should not be confused from the content.

Note that D0 cannot carry any flux and without loss of generality, we can always choose

the constant electric flux on the D8 with the only non-vanishing components (F̂ )01 =

−(F̂ )10 = −f . We then have the S-matrix for D0 and D8, respectively, as

S0
µν = −δµν , S8

µν =
(
S8
αβ , −1

)
, (3.5)

with the only non-vanishing components of S8
αβ as S8

00 = −S8
11 = −1+f2

1−f2 , S
8
01 = −S8

10 =

− 2f
1−f2 , and S8

aa = 1 where a = 2, 3 · · · 8. With the above preparation and by considering

the relevant conventions described in footnote 3, the tree-level cylinder-diagram amplitude

in the NS-NS sector can be carried out straightforwardly and is given as

ΓNS−NS = NS−NS〈B0|D|B8〉NS−NS,

=

√

1 − f2

2
n0 n8 V1 (8π2α′)−

1

2

∫ ∞

0
dt e−

Y 2

2πα′t t−
1

2

[
θ4
4 (0| i t)
θ4
2 (0| i t) − θ4

3 (0| i t)
θ4
2 (0| i t)

]

,

= −
√

1 − f2

2
n0 n8 V1 (8π2α′)−

1

2

∫ ∞

0
dt e−

Y 2

2πα′t t−
1

2 , (3.6)

where D is the standard closed string propagator and in the last step we have used the

usual Jacobi’s “abstruse identity” θ4
3 (0| i t) − θ4

4 (0| i t) − θ4
2 (0| i t) = 0. In the above, we

have replaced the normalization constant ck (k = 0, 8) by nkck with nk an integer to count

the multiplicity of the corresponding branes. In carrying out the above calculations, as

mentioned at the beginning of this section, we follow the trick as adopted in [13, 16, 17] by

making a respective unitary transformation of the oscillators in the boundary state for the

D0 such that its S0-matrix completely disappears while the boundary state for the D8 ends

up with a new S = S8(S0)T where T denotes the transpose. This new S-matrix shares

the same property as the original Sk satisfying ((Sk)T )µ
ρ(Sk)ρ

ν = δµ
ν with k = 0or 8

but its determinant is always unity and therefore can always be diagonalized to give its

eigenvalues. With this trick, the amplitude calculations as mentioned earlier are no more

complicated than the case for the D8 carrying no flux.

The above amplitude gives a repulsive potential per unit D0 brane worldvolume as

VNS−NS =

√

1 − f2

2
n0 n8 (8π2α′)−

1

2

∫ ∞

0
dt e−

Y 2

2πα′t t−
1

2 , (3.7)

– 9 –



J
H
E
P
1
1
(
2
0
0
9
)
0
0
4

which differs from the one for the D8 carrying no flux only by an overall factor
√

1 − f2.

Apart from this, the electric flux on the D8 doesn’t change the structure of the potential

at all. This is simply due to the fact that the eigenvalues of the above mentioned S-matrix,

which determine the amplitude structure, remain the same as if there is no such an electric

flux present. In fact, the eigenvalues of the matrix Sµ
ν have two of +1 and eight of −1

as one can check easily and explicitly. This overall factor arises from the overall factor

appearing in the bosonic zero-mode boundary state given in (3.2).

The underlying physics of the above can be understood in the following: If we T-

dualize along the electric flux direction on the D8, then the D8 will become a D7 moving

with a velocity of magnitude |f | ( ≤ 1) in the original flux direction while the D0 becomes

a D1 along the original flux direction but at rest. We can make a boost γ = 1/
√

1 − f2

against the D1 direction such that the D7 becomes at rest. Note that this boost has no

influence on the D1 since it has a Lorentz symmetry on its worldvolume. So after the

boost, both the D1 and the D7 are at rest. But such a boost has an effect on the tension

and the R-R charge of the D7, reducing each by a factor of
√

1 − f2, since such a boost

is in the direction orthogonal to its worldvolume. Now the D1 and the D7 are orthogonal

to each other and are related to the D8−p-Dp system by T-duality, which preserves 1/4 of

supersymmetries. In particular, we can T-dualize the above D1-D7 back to a static D0-D8

system with the D8 carrying no flux but with its tension and R-R charge
√

1 − f2 times

those of a fundamental D8, respectively. Such an understanding gives not only a physical

explanation to the above calculated amplitude but also predicts that the D0-D8 system

preserves the same 1/4 of susy whether the D8 carries an electric flux or not. This latter

must imply, due to the ‘no-force’ condition, the amplitude in the R-R sector,

ΓR−R =

√

1 − f2

2
n0 n8 V1 (8π2α′)−

1

2

∫ ∞

0
dt e−

Y 2

2πα′t t−
1

2 , (3.8)

and the corresponding attractive potential per unit D0 brane worldvolume

VR−R(Y ) = −
√

1 − f2

2
n0 n8 (8π2α′)−

1

2

∫ ∞

0
dt e−

Y 2

2πα′t t−
1

2 . (3.9)

Once again, only the massless modes rather than the full spectrum contribute to the inter-

action in either sector.

With the above known answer, we now try to calculate the amplitude in the R-R

sector directly and correctly. The complication arises from the regularization of fermionic

zero-modes which requires care. The tree-level cylinder-diagram amplitude in this sector

can be similarly calculated up to

ΓR−R = R−R〈B0|D|B8〉R−R

=

√

1 − f2

25
n0 n8 V1 (8π2α′)−

1

2

∫ ∞

0
dt e−

Y 2

2πα′t t−
1

2
(0)
R−R〈B0, η0|B8, η8〉(0)R−R, (3.10)

where
(0)

R−R〈B0, η0|B8, η8〉(0)R−R =
(0)

R−R〈B0
ψ, η

0|B8
ψ, η

8〉(0)R−R
(0)

R−R〈B0
sgh, η

0|B8
sgh, η

8〉(0)R−R. In ex-

tracting a finite meaningful result from the two divergent matrix elements due to the

– 10 –



J
H
E
P
1
1
(
2
0
0
9
)
0
0
4

fermionic zero-modes and the superghosts, respectively, we need to regularize both prop-

erly. The regularization adopted in [8, 9] is however not directly applicable at present since

the matrix U (3.4) appearing in the R-R zero-mode boundary state (3.3) in the presence

of an electric flux mixes a NN-direction Γ0-matrix with a ND-direction Γ1-matrix. As a

result, it is not possible to group pairs of Γ-matrices purely from the ND-directions and

purely from NN or DD directions. In other words, if we try to group, there is at least one

pair with one Γ-matrix from a ND-direction and the other from a NN- or DD-direction.

Such a grouping cannot give a meaningful result as stressed in [9]. One simple reason is

that this grouping is not consistent with T-duality since the corresponding SO(2) rotation

can convert a ND-direction to a NN or DD-direction and vice-versa but T-duality doesn’t

allow a ND-direction to become a NN- or DD-direction and vice-versa.

So we face a dilemma here. The evaluation of
(0)

R−R〈B0, η0|B8, η8〉(0)R−R ends up with two

terms Tr(Γ0Γ9)− fTr(Γ1Γ9) with Tr denoting the trace, where the second term associated

with the flux doesn’t allow a meaningful regularization since ‘1’ is a ND-direction while ‘9’

is a DD-direction. Our previous discussion on how to get rid of the electric flux on the D8

via a T-duality and a boost motivates us to resolve this, however. These transformations

shouldn’t change the value of matrix element as we discussed above for the evaluation of

the amplitude in NS-NS sector. So we can evaluate this matrix element after the above

transformations. A T-duality doesn’t change the direction of ‘1’ but a boost will rotate ‘0’

and ‘1’. This motivates us to define new Γ̃0 and Γ̃1 in terms of the old Γ0 and Γ1 as

Γ̃0 =
1

√

1 − f2

(
Γ0 − fΓ1

)
and Γ̃1 =

1
√

1 − f2

(
−fΓ0 + Γ1

)
, (3.11)

where the new Γ̃0 and Γ̃1 satisfy their respective own properties and further Γ̃0Γ̃1 = Γ0Γ1.

Using the newly defined Γ-matrices, we have
(0)

R−R〈B0
ψ, η

0|B8
ψ, η

8〉(0)R−R = −δη0η8,−Tr
(

Γ̃0Γ9
)

,

where the trace can now be regularized following the regularization procedure given in [9]

since the Γ̃0 is one along a NN-direction and Γ9 is one along a DD-direction. It is then

straightforward to have
(0)

R−R〈B0, η0|B8, η8〉(0)R−R = 24.

So we have from (3.10)

ΓR−R =

√

1 − f2

2
n0 n8 V1 (8π2α′)−

1

2

∫ ∞

0
dt e−

Y 2

2πα′t t−
1

2 , (3.12)

which is identical to the predicted one given in (3.8). This in turn shows that our above

well-motivated regularization process makes sense.

The underlying physical picture given earlier in this section also makes it certain that

the two improved interpretations discussed in the previous section continue to apply to the

present system. This has to be true if these interpretations make sense indeed since the

present system preserves the same number of susy as the system discussed in the previous

section for which the D8 doesn’t carry any flux. We know that the present system is

equivalent to a D0-D8 system with the D8 carrying no flux but with its tension and R-R

charge reduced by a factor of
√

1 − f2 but the corresponding quantities for the D0 remain

untouched. This clearly indicates that the improved second interpretation regarding the

R-R interaction as purely due to the usual attractive Coulomb-like force between the two
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branes [9] continues to hold. Also with the above in mind, it is obvious that the improved

first interpretation holds also if one notices that the tension of the string stretched should

also be reduced by this same factor since the string is along a DD-direction and its tension

is energy per unit length and so it should be re-scaled by this same factor under the boost.

This can also be equivalently inferred from the scaling of the D8-brane tension from either

the R-R potential or the NS-NS potential plus the ‘no-force’ condition since it is just the

finite piece described in the previous section.

4 The D8 with a magnetic flux

The D8 carrying a constant electric flux as discussed in the previous section is actually the

so-called (F, D8) non-threshold bound state. The zero net force between a D0 and a (F,

D8) can also be intuitively understood by noticing that the D0 doesn’t interact with either

constituent in the bound state. When a D8 carries a constant magnetic flux, it actually

represents the so-called (D6, D8) non-threshold bound state. But now since the D0 has

a net repulsive interaction with the D6 in the bound state [1], we expect that there is

a repulsive non-zero net force between the D0 and the (D6, D8). So this system cannot

preserve any susy in general3 and one also expects that the interaction is no longer purely

due to the massless modes as would be the case for pure D8 or for D8 carrying an electric

flux. However, this latter point applies only to the NS-NS sector interaction since there is

no R-R sector interaction between the D0 and the D6. We therefore expect that the R-R

sector amplitude remains the same as in the absence of the magnetic flux which will be

shown shortly. This implies that our improved interpretations given in section 2 continue

to hold even in this case. Let us now calculate this non-vanishing interaction which can be

performed even simpler than the previous case since we don’t have a regularization issue

here for the fermionic zero modes in the R-R sector.

We also have the S-matrix for D0 or D8 to be given in (3.5) but with now the only

non-vanishing components of S8
αβ as −S8

00 = S8
11 = · · · = S8

66 = 1, S8
77 = S8

88 = 1−f2

1+f2 , S
8
78 =

−S8
87 = 2f

1+f2 . For this, we have taken the only non-vanishing components of the magnetic

flux as F̂78 = −F̂87 = −f . With the same trick as mentioned in the previous section, the

new matrix S = S8(S0)T has its eigenvalues as {λ, λ−1, 1, 1, −1, −1, −1, −1, −1, −1},
with the sum of λ and λ−1, needed only in the amplitude calculations, given as

λ+ λ−1 = −2
1 − f2

1 + f2
. (4.1)

We have then the amplitude in the NS-NS sector as

ΓNS−NS = NS−NS〈B0|D|B8〉NS−NS

=
n0 n8 V1

2(8π2α′)
1

2

∫ ∞

0
dte−

Y 2

2πα′t t−
1

2

[

θ3 (ν|it) θ3
3

(
1
2 |it

)

θ1 (ν|it) θ3
1

(
1
2 |it

) − θ4 (ν|it) θ3
4

(
1
2 |it

)

θ1 (ν|it) θ3
1

(
1
2 |it

)

]

, (4.2)

3In certain special cases as specified in [18], this system can be supersymmetric and we will not discuss

these special cases here. See also [19, 20]
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where the parameter ν is defined via λ ≡ exp(2π i ν) with ν ∈ (0, 1/2] and from (4.1) we

have sinπν = 1/
√

1 + f2. The amplitude in the R-R sector can also be calculated as

ΓR−R = R−R〈B0|D|B8〉R−R =
1

2
n0 n8 V1 (8π2α′)−

1

2

∫ ∞

0
dt e−

Y 2

2πα′t t−
1

2 , (4.3)

where we have employed the regularization for the fermionic zero modes given in [9] for

the zero-mode matrix element,
(0)
R 〈B0

ψ, η
0|B8

ψ, η
8〉(0)R = − δη0η8,−√

1+f2
Tr

(
Γ0Γ9

)
, which meets the

regularization requirement. Note that this R-R amplitude is indeed the same as that in the

absence of the flux, as anticipated, again purely due to the massless modes. Therefore, the

improved interpretations discussed in section 2 for the attractive potential in this sector

continue to hold.

So the total amplitude Γ = ΓNS−NS + ΓR−R is now

Γ =
n0 n8 V1

2(8π2α′)
1

2

∫ ∞

0
dte−

Y 2

2πα′t t−
1

2

[

1 +
θ3 (ν|it) θ3

3

(
1
2 |it

)

θ1 (ν|it) θ3
1

(
1
2 |it

) − θ4 (ν|it) θ3
4

(
1
2 |it

)

θ1 (ν|it) θ3
1

(
1
2 |it

)

]

= − n0 n8 V1

(8π2α′)
1

2

∫ ∞

0
dt e−

Y 2

2πα′t t−
1

2

θ4
1

(
1
4 − ν

2 | i t
)

θ1 (ν| i t) θ3
1

(
1
2 | i t

)

= − n0 n8 V1

(8π2α′)
1

2

sin4 π
(

1
4 − ν

2

)

sinπν

∫ ∞

0
dt e−

Y 2

2πα′t t−
1

2

×
∞∏

n=1

(
1 − λ̄|z|2n

)4 (
1 − λ̄−1|z|2n

)4

(1 − λ|z|2n) (1 − λ−1|z|2n) (1 + |z|2n)6
, (4.4)

where in the second equality we have made use of the following fundamental Jacobian

identity −2θ4
1

(
ν
2 − 1

4

∣
∣ i t

)
= θ1 (ν| i t) θ3

1

(
1
2

∣
∣ i t

)
+θ3 (ν| i t) θ3

3

(
1
2

∣
∣ i t

)
−θ4 (ν| i t) θ3

4

(
1
2

∣
∣ i t

)

which can be obtained from the equation (iv) on page 468 in [21] with certain choices

of variables and also a relation θ1(1 − ν|it) = θ1(ν|it). In the above |z| = e−πt and λ̄ =

exp[2πi(1/4−ν/2)]. It is obvious that the amplitude vanishes only in the absence of the flux,

i.e., ν = 1/2. Noticing that
(
1 − λ|z|2n

) (
1 − λ−1|z|2n

)
=

(
1 − 2 cos 2πν |z|2n + |z|4n

)
>

0, this amplitude is always less than zero for the non-vanishing flux, therefore implying

a repulsive interaction as anticipated. This can further be understood as follows: the

interactions between the D0 and D6 and between the D0 and the D8 are both repulsive in

the NS-NS sector while the interaction from the R-R sector is purely from that between the

D0 and D8. Also in the absence of the D6 in the bound state, the net interaction vanishes.

So now we must have a repulsive interaction since the repulsive part is enlarged.

From the above calculations, it becomes clear that adding a flux, electric or magnetic,

to the D8 will not change the singular behavior of the R-R potential which is due to

massless modes. This implies that if there is any change to the NS-NS potential, it must

be an overall factor and/or a change on the part due to massive modes which will not be

important for large t in the closed string cylinder-diagram or small t in the open string

annulus diagram. Precisely in this region, the t-integration gives rise to the singularity.

This will remain so even for a more general flux or fluxes. So we conclude that the non-

threshold (F, D8) or (D6, D8) bound state or a D8 carrying more general flux/fluxes will

not exist as an independent object just like the D8 carrying no flux.
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5 Summary

In this paper, we address various subtle issues regarding the D0-D8 system. First we

show that the potential in either the NS-NS or R-R sector is actually divergent and can

be expressed as a brane-separation-independent divergent piece plus a brane-separation-

dependent finite piece. This divergent piece in each sector is the interaction energy when

the D0 and the D8 has zero separation, therefore can be viewed as the zero-point energy in

this sector. The finite piece can be viewed as the Casimir energy and in particular in the

R-R sector it can be viewed as due to a string created with its tension one half of that of

a fundamental string when the D0 moves away from the D8 at a distance. With this, we

have improved the understanding of a fundamental string creation as given in [12] when

the D0 crosses the D8 by including the divergent piece in each sector before and after the

crossing. The other interpretation continues to hold if the divergent piece is also included

in the R-R potential.

We have also shown that the above improved interpretations regarding the non-

vanishing attractive R-R potential continue to hold even in the presence of a flux, electric

or magnetic. When the flux is electric, we also resolve a subtle issue in section 3 on how

to implement properly the regularization of fermionic zero-modes given in [9] so that a

meaning result can be obtained for the R-R potential.

The persistence of divergence for the amplitude in each sector in the presence of a

flux, electric or magnetic, or even a more general flux indicates that the non-threshold (F,

D8) or (D6, D8) bound state, or the D8 carrying a more general flux cannot exist as an

independent of object, either.
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